On a countable sequence of homoclinic orbits arising near a saddle-center point
Autor: | Baldomá, Inmaculada, Guardia, Marcel, Pelinovsky, Dmitry E. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Exponential small splitting of separatrices in the singular perturbation theory leads generally to nonvanishing oscillations near a saddle--center point and to nonexistence of a true homoclinic orbit. It was conjectured long ago that the oscillations may vanish at a countable set of small parameter values if there exist a quadruplet of singularities in the complex analytic extension of the limiting homoclinic orbit. The present paper gives a rigorous proof of this conjecture for a particular fourth-order equation relevant to the traveling wave reduction of the modified Korteweg--de Vries equation with the fifth-order dispersion term. Comment: 66 pages, 6 figures |
Databáze: | arXiv |
Externí odkaz: |