Adaptive cancellation of mains power interference in continuous gravitational wave searches with a hidden Markov model

Autor: Kimpson, Tom, Suvorova, Sofia, Middleton, Hannah, Liu, Changrong, Melatos, Andrew, Evans, Robin J., Moran, William
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Continuous gravitational wave searches with terrestrial, long-baseline interferometers are hampered by long-lived, narrowband features in the power spectral density of the detector noise, known as lines. Candidate GW signals which overlap spectrally with known lines are typically vetoed. Here we demonstrate a line subtraction method based on adaptive noise cancellation, using a recursive least squares algorithm, a common approach in electrical engineering applications such as audio and biomedical signal processing. We validate the line subtraction method by combining it with a hidden Markov model (HMM), a standard continuous wave search tool, to detect an injected continuous wave signal with an unknown and randomly wandering frequency, which overlaps with the mains power line at $60 \, {\rm Hz}$ in the Laser Interferometer Gravitational Wave Observatory (LIGO). The performance of the line subtraction method is tested on an injected continuous wave signal obscured by (a) synthetic noise data with both Gaussian and non-Gaussian components, and (b) real noise data obtained from the LIGO Livingston detector. In both cases, before applying the line subtraction method the HMM does not detect the injected continuous wave signal. After applying the line subtraction method the mains power line is suppressed by 20--40 dB, and the HMM detects the underlying signal, with a time-averaged root-mean-square error in the frequency estimate of $\sim 0.05 $ Hz. The performance of the line subtraction method with respect to the characteristics of the 60 Hz line and the control parameters of the recursive least squares algorithm is quantified in terms of receiver operating characteristic curves.
Comment: 16 pages, 11 figures. Accepted for publication in PRD
Databáze: arXiv