Autor: |
Dannenberg, M., Hagerstrom, W., Hart, G., Iosevich, A., Le, T., Li, I., Skerrett, N. |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We solve a variant of the classical Buffon Needle problem. More specifically, we inspect the probability that a randomly oriented needle of length $l$ originating in a bounded convex set $X\subset\mathbb{R}^2$ lies entirely within $X$. Using techniques from convex geometry, we prove an isoperimetric type inequality, showing that among sets $X$ with equal perimeter, the disk maximizes this probability. |
Databáze: |
arXiv |
Externí odkaz: |
|