Popis: |
Understanding the fracture mechanisms in composite materials across scales, from nano- to micro-scales, is essential for an in-depth understanding of the reinforcement mechanisms and designing the next generation of lightweight, high-strength composites. However, conventional methods struggle to model the complex fracture behavior of nanocomposites, particularly at the fiber-matrix interface. The phase-field regularized cohesive fracture model has proven to be effective in simulating crack initiation, branching, and propagation; however, capturing the cohesive fracture strength at smaller scales remains a significant challenge. This study introduces a novel approach that combines an energy-based star-convex decomposition cohesive phase-field fracture model with molecular dynamics simulations to explore the thickness dependency of nanocomposite mechanical properties. The proposed framework enables hierarchical modeling of carbon-nitride nanosheet-reinforced composites' mechanical and fracture behaviors. The developed model could elucidate complex fracture processes across different scales and highlight critical scaling effects. This methodology provides an efficient solution for uncovering hierarchical fracture mechanisms in reinforced nanocomposites, offering valuable insights into their fracture behavior and strengthening mechanisms. |