Stability of the Inviscid Power-Law Vortex in Self-Similar Coordinates

Autor: Coiculescu, Matei P.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that the stationary power-law vortex $\overline{\omega}(x) = \beta |x|^{-\alpha}$, which explicitly solves the incompressible Euler equations in $\mathbb{R}^2$, is linearly stable in self-similar coordinates with the natural scaling.
Comment: 21 pages
Databáze: arXiv