Random Dehn function of groups

Autor: García-Mejía, Jerónimo, Goldsborough, Antoine
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this note, we study the notion of random Dehn function and compute an asymptotic upper bound for finitely presented acylindrically hyperbolic groups whose Dehn function is at most polynomial with integer exponent. By showing that in these cases the random Dehn function is strictly smaller than the usual Dehn function we confirm Gromov's intuition albeit in a different model.
Comment: 8 pages, comments welcome!
Databáze: arXiv