Monotonous period function for equivariant differential equations with homogeneous nonlinearities
Autor: | Gasull, Armengol, Rojas, David |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that the period function of the center at the origin of the $\mathbb{Z}_k$-equivariant differential equation $\dot{z}=iz+a(z\overline{z})^nz^{k+1}, a\ne0,$ is monotonous decreasing for all $n$ and $k$ positive integers, solving a conjecture about them. We show this result as corollary of proving that the period function of the center at the origin of a sub-family of the reversible quadratic centers is monotonous decreasing as well. Comment: 16 pages |
Databáze: | arXiv |
Externí odkaz: |