Extremal Values of the Atom-Bond Connectivity Index for Trees with Given Roman Domination Numbers

Autor: Ali, Waqar, Husin, Mohamad Nazri Bin, Nadeem, Muhammad Faisal
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Consider that $\mathbb{G}=(\mathbb{X}, \mathbb{Y})$ is a simple, connected graph with $\mathbb{X}$ as the vertex set and $\mathbb{Y}$ as the edge set. The atom-bond connectivity ($ABC$) index is a novel topological index that Estrada introduced in Estrada et al. (1998). It is defined as $$ A B C(\mathbb{G})=\sum_{xy \in Y(\mathbb{G})} \sqrt{\frac{\zeta_x+\zeta_y-2}{\zeta_x \zeta_y}} $$ where $\zeta_x$ and $\zeta_x$ represent the degrees of the vertices $x$ and $y$, respectively. In this work, we explore the behavior of the $A B C$ index for tree graphs. We establish both lower and upper bounds for the $A B C$ index, expressed in terms of the graph's order and its Roman domination number. Additionally, we characterize the tree structures that correspond to these extremal values, offering a deeper understanding of how the Roman domination number ($RDN$) influences the $A B C$ index in tree graphs.
Databáze: arXiv