Efficient Audio-Visual Fusion for Video Classification
Autor: | Awan, Mahrukh, Nadeem, Asmar, Mustafa, Armin |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We present Attend-Fusion, a novel and efficient approach for audio-visual fusion in video classification tasks. Our method addresses the challenge of exploiting both audio and visual modalities while maintaining a compact model architecture. Through extensive experiments on the YouTube-8M dataset, we demonstrate that our Attend-Fusion achieves competitive performance with significantly reduced model complexity compared to larger baseline models. Comment: CVMP Short Paper |
Databáze: | arXiv |
Externí odkaz: |