Popis: |
This work deals with the numerical approximation of plasmas which are confined by the effect of a fast oscillating magnetic field (see \cite{Bostan2012}) in the Vlasov model. The presence of this magnetic field induces oscillations (in time) to the solution of the characteristic equations. Due to its multiscale character, a standard time discretization would lead to an inefficient solver. In this work, time integrators are derived and analyzed for a class of highly oscillatory differential systems. We prove the uniform accuracy property of these time integrators, meaning that the accuracy does not depend on the small parameter $\varepsilon$. Moreover, we construct an extension of the scheme which degenerates towards an energy preserving numerical scheme for the averaged model, when $\varepsilon\to 0$. Several numerical results illustrate the capabilities of the method. |