Autor: |
Mingare, Angus, Moroz, Anastasia, Kovacs, Marcell D, Green, Andrew G |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Implementing many important sub-circuits on near-term quantum devices remains a challenge due to the high levels of noise and the prohibitive depth on standard nearest-neighbour topologies. Overcoming these barriers will likely require quantum error mitigation (QEM) strategies. This work introduces the notion of efficient, high-fidelity verifier circuit architectures that we propose for use in such a QEM scheme. We provide a method for constructing verifier circuits for any quantum circuit that is accurately represented by a low-dimensional matrix product operator (MPO). We demonstrate our method by constructing explicit verifier circuits for multi-controlled single unitary gates as well as the quantum Fourier transform (QFT). By transpiling the circuits to a 2D array of qubits, we estimate the crossover point where the verifier circuit is shallower than the circuit itself, and hence useful for QEM. We propose a method of in situ QEM using the verifier circuit architecture. We conclude that our approach may be useful for calibrating quantum sub-circuits to counter coherent noise but cannot correct for the incoherent noise present in current devices. |
Databáze: |
arXiv |
Externí odkaz: |
|