A Poincar\'e-Birkhoff theorem for multivalued successor maps with applications to periodic superlinear Hamiltonian systems

Autor: Feltrin, Guglielmo, Fonda, Alessandro, Sfecci, Andrea
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s11784-024-01128-5
Popis: We provide a new version of the Poincar\'e-Birkhoff theorem for possibly multivalued successor maps associated with planar non-autonomous Hamiltonian systems. As an application, we prove the existence of periodic and subharmonic solutions of the scalar second order equation $\ddot x + \lambda g(t,x) = 0$, for $\lambda>0$ sufficiently small, with $g(t,x)$ having a superlinear growth at infinity, without requiring the existence of an equilibrium point.
Comment: 21 pages, 4 figures
Databáze: arXiv