Encoding architecture algebra
Autor: | Bersier, Stephane, Chen-Lin, Xinyi |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Despite the wide variety of input types in machine learning, this diversity is often not fully reflected in their representations or model architectures, leading to inefficiencies throughout a model's lifecycle. This paper introduces an algebraic approach to constructing input-encoding architectures that properly account for the data's structure, providing a step toward achieving more typeful machine learning. Comment: 25 pages, 6 figures. Keywords: typeful, algebraic data types, tensors, structured data |
Databáze: | arXiv |
Externí odkaz: |