Conditional Lagrangian Wasserstein Flow for Time Series Imputation

Autor: Qian, Weizhu, Zhang, Dalin, Zhao, Yan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Time series imputation is important for numerous real-world applications. To overcome the limitations of diffusion model-based imputation methods, e.g., slow convergence in inference, we propose a novel method for time series imputation in this work, called Conditional Lagrangian Wasserstein Flow. The proposed method leverages the (conditional) optimal transport theory to learn the probability flow in a simulation-free manner, in which the initial noise, missing data, and observations are treated as the source distribution, target distribution, and conditional information, respectively. According to the principle of least action in Lagrangian mechanics, we learn the velocity by minimizing the corresponding kinetic energy. Moreover, to incorporate more prior information into the model, we parameterize the derivative of a task-specific potential function via a variational autoencoder, and combine it with the base estimator to formulate a Rao-Blackwellized sampler. The propose model allows us to take less intermediate steps to produce high-quality samples for inference compared to existing diffusion methods. Finally, the experimental results on the real-word datasets show that the proposed method achieves competitive performance on time series imputation compared to the state-of-the-art methods.
Comment: 13 pages, 2 figures
Databáze: arXiv