Autor: |
Ji, Zhengran, Zhang, Lingyu, Sajda, Paul, Chen, Boyuan |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Learning collaborative behaviors is essential for multi-agent systems. Traditionally, multi-agent reinforcement learning solves this implicitly through a joint reward and centralized observations, assuming collaborative behavior will emerge. Other studies propose to learn from demonstrations of a group of collaborative experts. Instead, we propose an efficient and explicit way of learning collaborative behaviors in multi-agent systems by leveraging expertise from only a single human. Our insight is that humans can naturally take on various roles in a team. We show that agents can effectively learn to collaborate by allowing a human operator to dynamically switch between controlling agents for a short period and incorporating a human-like theory-of-mind model of teammates. Our experiments showed that our method improves the success rate of a challenging collaborative hide-and-seek task by up to 58$% with only 40 minutes of human guidance. We further demonstrate our findings transfer to the real world by conducting multi-robot experiments. |
Databáze: |
arXiv |
Externí odkaz: |
|