Geodesic Distance Riesz Energy on Projective Spaces

Autor: Bilyk, Dmitriy, Matzke, Ryan W., Nathe, Joel
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We study probability measures that minimize the Riesz energy with respect to the geodesic distance $\vartheta (x,y)$ on projective spaces $\mathbb{FP}^d$ (such energies arise from the 1959 conjecture of Fejes T\'oth about sums of non-obtuse angles), i.e. the integral \begin{equation} \frac{1}{s} \int_{\mathbb{FP}^d} \int_{\mathbb{FP}^d} \big( \vartheta (x,y) \big)^{-s} d\mu(x) d\mu (y) \,\,\, \text{ for } \,\,\, sComment: 39 pages, 4 figures
Databáze: arXiv