Popis: |
Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa, even after statistical postprocessing. AI-based forecasting models show promise but have avoided precipitation due to its complexity. Synoptic-scale forcings like African easterly waves and other tropical waves (TWs) are important for predictability in tropical Africa, yet their value for predicting daily rainfall remains unexplored. This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on TW predictors from satellite-based GPM IMERG data to predict daily rainfall during the July-September monsoon season. Predictor variables are derived from the local amplitude and phase information of seven TW from the target and up-and-downstream neighboring grids at 1-degree spatial resolution. The ML models are combined with Easy Uncertainty Quantification (EasyUQ) to generate calibrated probabilistic forecasts and are compared with three benchmarks: Extended Probabilistic Climatology (EPC15), ECMWF operational ensemble forecast (ENS), and a probabilistic forecast from the ENS control member using EasyUQ (CTRL EasyUQ). The study finds that downstream predictor variables offer the highest predictability, with downstream tropical depression (TD)-type wave-based predictors being most important. Other waves like mixed-Rossby gravity (MRG), Kelvin, and inertio-gravity waves also contribute significantly but show regional preferences. ENS forecasts exhibit poor skill due to miscalibration. CTRL EasyUQ shows improvement over ENS and marginal enhancement over EPC15. Both gamma regression and CNN forecasts significantly outperform benchmarks in tropical Africa. This study highlights the potential of ML models trained on TW-based predictors to improve daily precipitation forecasts in tropical Africa. |