Embedding separable spaces $\mathcal{C}(L)$ in arbitrary spaces $\mathcal{C}(K)$
Autor: | Rondoš, Jakub, Sobota, Damian |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a compact metric space $L$ and a compact space $K$, and their Banach spaces $\mathcal{C}(L)$ and $\mathcal{C}(K)$ of continuous functions, we provide several characterizations of the presence of isometric, resp. isomorphic, copies of $\mathcal{C}(L)$ in $\mathcal{C}(K)$, in particular, in terms of Cantor--Bendixson derivatives of $L$ and $K$. We also describe the relative cellularities of the perfect kernel of $K$ and of Cantor--Bendixson derived sets of $K$ of countable order in terms of the existence of isometric copies of specific spaces $\mathcal{C}(L)$ inside $\mathcal{C}(K)$. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |