A converse to a theorem of Gauss on Gauss sums
Autor: | Bober, Jonathan W., Goldmakher, Leo |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this note we prove (under mild hypotheses) that $f$ is a nontrivial character of $\mathbb{F}_p$ if and only if the Fourier transform of $f$ has magnitude 1 somewhere in $\mathbb{F}_p^\times$. This implies a converse to a theorem of Gauss on the magnitude of the Gauss sum, in addition to other consequences. Comment: 4 pages. Comments very welcome! |
Databáze: | arXiv |
Externí odkaz: |