Existence of solutions for a semilinear parabolic system with singular initial data

Autor: Fujishima, Yohei, Ishige, Kazuhiro, Kawakami, Tatsuki
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $(u,v)$ be a solution to the Cauchy problem for a semilinear parabolic system \[ \mathrm{(P)} \qquad \cases{ \partial_t u=D_1\Delta u+v^p\quad & $\quad\mbox{in}\quad{\mathbb{R}}^N\times(0,T),$\\ \partial_t v=D_2\Delta v+u^q\quad & $\quad\mbox{in}\quad{\mathbb{R}}^N\times(0,T),$\\ (u(\cdot,0),v(\cdot,0))=(\mu,\nu) & $\quad\mbox{in}\quad{\mathbb{R}}^N,$ } \] where $N\ge 1$, $T>0$, $D_1>0$, $D_2>0$, $01$, and $(\mu,\nu)$ is a pair of nonnegative Radon measures or locally integrable nonnegative functions in ${\mathbb R}^N$. In this paper we establish sharp sufficient conditions on the initial data for the existence of solutions to problem~(P) using uniformly local Morrey spaces and uniformly local weak Zygmund type spaces.
Databáze: arXiv