SiamTST: A Novel Representation Learning Framework for Enhanced Multivariate Time Series Forecasting applied to Telco Networks
Autor: | Kristoffersen, Simen, Nordby, Peter Skaar, Malacarne, Sara, Ruocco, Massimiliano, Ortiz, Pablo |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce SiamTST, a novel representation learning framework for multivariate time series. SiamTST integrates a Siamese network with attention, channel-independent patching, and normalization techniques to achieve superior performance. Evaluated on a real-world industrial telecommunication dataset, SiamTST demonstrates significant improvements in forecasting accuracy over existing methods. Notably, a simple linear network also shows competitive performance, achieving the second-best results, just behind SiamTST. The code is available at https://github.com/simenkristoff/SiamTST. Comment: 14 pages, 3 figures, public codebase |
Databáze: | arXiv |
Externí odkaz: |