Stochastic homogenization of HJ equations: a differential game approach

Autor: Davini, Andrea, Saona, Raimundo, Ziliotto, Bruno
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove stochastic homogenization for a class of non-convex and non-coercive first-order Hamilton-Jacobi equations in a finite-range of dependence environment for Hamiltonians that can be expressed by a max-min formula. We make use of the representation of the solution as a value function of a differential game to implement a game-theoretic approach to the homogenization problem.
Databáze: arXiv