Autor: |
Davini, Andrea, Saona, Raimundo, Ziliotto, Bruno |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We prove stochastic homogenization for a class of non-convex and non-coercive first-order Hamilton-Jacobi equations in a finite-range of dependence environment for Hamiltonians that can be expressed by a max-min formula. We make use of the representation of the solution as a value function of a differential game to implement a game-theoretic approach to the homogenization problem. |
Databáze: |
arXiv |
Externí odkaz: |
|