Autor: |
Trabelsi, Firas, Vilar, David, Finkelstein, Mara, Freitag, Markus |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Minimum Bayes Risk (MBR) decoding is a powerful decoding strategy widely used for text generation tasks, but its quadratic computational complexity limits its practical application. This paper presents a novel approach for approximating MBR decoding using matrix completion techniques, focusing on the task of machine translation. We formulate MBR decoding as a matrix completion problem, where the utility metric scores between candidate hypotheses and pseudo-reference translations form a low-rank matrix. First, we empirically show that the scores matrices indeed have a low-rank structure. Then, we exploit this by only computing a random subset of the scores and efficiently recover the missing entries in the matrix by applying the Alternating Least Squares (ALS) algorithm, thereby enabling a fast approximation of the MBR decoding process. Our experimental results on machine translation tasks demonstrate that the proposed method requires 1/16 utility metric computations compared to vanilla MBR decoding while achieving equal translation quality measured by COMET22 on the WMT22 dataset (en<>de and en<>ru). We also benchmark our method against other approximation methods and we show gains in quality when comparing to them. |
Databáze: |
arXiv |
Externí odkaz: |
|