Projective modules over Rees-like algebras and its monoid extensions
Autor: | Bhaumik, Chandan, Raihan, Md Abu, Sarwar, Husney Parvez |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $A$ be a Rees-like algebra of dimension $d$ and $N$ a commutative partially cancellative torsion-free seminormal monoid. We prove the following results. \begin{enumerate} \item Let $P$ be a finitely generated projective $A$-module of $\rank\geq d$. Then $(i)$ $P$ has a unimodular element; $(ii)$ The action of $\EL(A\oplus P)$ on $\Um(A\oplus P)$ is transitive. \item Let $P$ be a finitely generated projective $A[N]$-module of $\rank~r$. Then $(i)$ $P$ has a unimodular element for $r\geq\max\{3,d\}$; $(ii)$ The action of $\EL(A[N]\oplus P)$ on $\Um(A[N]\oplus P)$ is transitive for $r\geq\max\{2,d\}$. \end{enumerate} These improve the classical results of Serre \cite{Se58} and Bass \cite{Ba64}. Comment: Comments are welcome, Submitted to the journal |
Databáze: | arXiv |
Externí odkaz: |