On the image of the total power operation for Burnside rings

Autor: Cornelius, Nathan, Dominguez, Lewis, Mehrle, David, Modi, Lakshay, Rose, Millie, Stapleton, Nathaniel
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that the image of the total power operation for Burnside rings $A(G) \to A(G\wr\Sigma_n)$ lies inside a relatively small, combinatorial subring $\mathring A(G,n) \subseteq A(G \wr \Sigma_n)$. As $n$ varies, the subrings $\mathring A(G,n)$ assemble into a commutative graded ring $\mathring A(G)$ with a universal property: $\mathring A(G)$ carries the universal family of power operations out of $A(G)$. We construct character maps for $\mathring A(G,n)$ and give a formula for the character of the total power operation. Using $\mathring A(G)$, we extend the Frobenius--Wielandt homomorphism of Dress--Siebeneicher--Yoshida to wreath products compatibly with the total power operation. Finally, we prove a generalization of Burnside's orbit counting lemma that describes the transfer map $A(G \wr \Sigma_n) \to A(\Sigma_n)$ on the subring $\mathring A(G,n)$.
Databáze: arXiv