Graded Betti numbers of powers of path ideals of paths
Autor: | Balanescu, Silviu, Cimpoeas, Mircea, Vu, Thanh |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $I_{n,m} = (x_1\cdots x_{m},x_2 \cdots x_{m+1},\ldots,x_{n+1}x_{n+2}\cdots x_{n+m})$ be the $m$-path ideal of a path of length $n + m-1$ over a polynomial ring $S = \mathrm{k}[x_1,\ldots,x_{n+m}]$. We compute all the graded Betti numbers of all powers of $I_{n,m}$. |
Databáze: | arXiv |
Externí odkaz: |