On the Unprovability of Circuit Size Bounds in Intuitionistic $\mathsf{S}^1_2$

Autor: Chen, Lijie, Li, Jiatu, Oliveira, Igor C.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We show that there is a constant $k$ such that Buss's intuitionistic theory $\mathsf{IS}^1_2$ does not prove that SAT requires co-nondeterministic circuits of size at least $n^k$. To our knowledge, this is the first unconditional unprovability result in bounded arithmetic in the context of worst-case fixed-polynomial size circuit lower bounds. We complement this result by showing that the upper bound $\mathsf{NP} \subseteq \mathsf{coNSIZE}[n^k]$ is unprovable in $\mathsf{IS}^1_2$.
Databáze: arXiv