Towards an Edge Intelligence-Based Traffic Monitoring System

Autor: Barbuto, Vincenzo, Savaglio, Claudio, Minerva, Roberto, Crespi, Noel, Fortino, Giancarlo
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1109/SMC53992.2023.10393907
Popis: Cities have undergone significant changes due to the rapid increase in urban population, heightened demand for resources, and growing concerns over climate change. To address these challenges, digital transformation has become a necessity. Recent advancements in Artificial Intelligence (AI) and sensing techniques, such as synthetic sensing, can elevate Digital Twins (DTs) from digital copies of physical objects to effective and efficient platforms for data collection and in-situ processing. In such a scenario, this paper presents a compre-hensive approach for developing a Traffic Monitoring System (TMS) based on Edge Intelligence (EI), specifically designed for smart cities. Our approach prioritizes the placement of intelligence as close as possible to data sources, and leverages an "opportunistic" interpretation of DT (ODT), resulting in a novel and interdisciplinary strategy to re-engineering large-scale distributed smart systems. The preliminary results of the proposed system have shown that moving computation to the edge of the network provides several benefits, including (i) enhanced inference performance, (ii) reduced bandwidth and power consumption, (iii) and decreased latencies with respect to the classic cloud -centric approach.
Databáze: arXiv