On multicolor Tur\'an numbers
Autor: | Balogh, József, Liebenau, Anita, Mattos, Letícia, Morrison, Natasha |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We address a problem which is a generalization of Tur\'an-type problems recently introduced by Imolay, Karl, Nagy and V\'ali. Let $F$ be a fixed graph and let $G$ be the union of $k$ edge-disjoint copies of $F$, namely $G = \mathbin{\dot{\cup}}_{i=1}^{k} F_i$, where each $F_i$ is isomorphic to a fixed graph $F$ and $E(F_i)\cap E(F_j)=\emptyset$ for all $i \neq j$. We call a subgraph $H\subseteq G$ multicolored if $H$ and $F_i$ share at most one edge for all $i$. Define $\text{ex}_F(H,n)$ to be the maximum value $k$ such that there exists $G = \mathbin{\dot{\cup}}_{i=1}^{k} F_i$ on $n$ vertices without a multicolored copy of $H$. We show that $\text{ex}_{C_5}(C_3,n) \le n^2/25 + 3n/25+o(n)$ and that all extremal graphs are close to a blow-up of the 5-cycle. This bound is tight up to the linear error term. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |