Uniformity numbers of the null-additive and meager-additive ideals
Autor: | Cardona, Miguel A., Mejía, Diego A., Rivera-Madrid, Ismael E. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Denote by $\mathcal{N}\!\mathcal{A}$ and $\mathcal{MA}$ the ideals of null-additive and meager-additive subsets of $2^\omega$, respectively. We prove in ZFC that $\mathrm{add}(\mathcal{N}\!\mathcal{A})=\mathrm{non}(\mathcal{N}\!\mathcal{A})$ and introduce a new (Polish) relational system to reformulate Bartoszy\'nski's and Judah's characterization of the uniformity of $\mathcal{MA}$, which is helpful to understand the combinatorics of $\mathcal{MA}$ and to prove consistency results. As for the latter, we prove that $\mathrm{cov}(\mathcal{MA})<\mathfrak{c}$ (even $\mathrm{cov}(\mathcal{MA})<\mathrm{non}(\mathcal{N})$) is consistent with ZFC, as well as several constellations of Cicho\'n's diagram with $\mathrm{non}(\mathcal{N}\!\mathcal{A})$, $\mathrm{non}(\mathcal{MA})$ and $\mathrm{add}(\mathcal{SN})$, which include $\mathrm{non}(\mathcal{N}\!\mathcal{A})<\mathfrak{b}< \mathrm{non}(\mathcal{MA})$ and $\mathfrak{b}< \mathrm{add}(\mathcal{SN})<\mathrm{cov}(\mathcal{M})<\mathfrak{d}=\mathfrak{c}$. Comment: 35 pages and 13 figures |
Databáze: | arXiv |
Externí odkaz: |