Global solvability for the heat equations in two half spaces and an interface
Autor: | Koba, Hajime |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | This paper considers the existence of a global-in-time strong solution to the heat equations in the two half spaces $\mathbb{R}^3_+(=\mathbb{R}^2 \times (0,\infty))$, $\mathbb{R}^3_-(= \mathbb{R}^2 \times (-\infty ,0))$, and the interface $\mathbb{R}^2 \times \{ 0 \} (\cong \mathbb{R}^2)$. We introduce and study some function spaces in the two half spaces and the interface. We apply our function spaces and the maximal $L^p$-regularity for Hilbert space-valued functions to show the existence of a strong solution to our heat equations. The key idea of constructing strong solutions to our system is to make use of nice properties of the heat semigroups and kernels for $\mathbb{R}^3_+$, $\mathbb{R}^3_{-}$, and $\mathbb{R}^2$. In Appendix, we derive our heat equations in the two half spaces and the interface from an energetic point of view. Comment: 1 figure |
Databáze: | arXiv |
Externí odkaz: |