Popis: |
Given an ideal $\mathcal{I}$ on $\omega$ and a bounded real sequence $\textbf{x}$, we denote by $\text{core}_{\textbf{x}}(\mathcal{I})$ the smallest interval $[a,b]$ such that $\{n \in \omega: x_n \notin [a-\varepsilon,b+\varepsilon]\} \in \mathcal{I}$ for all $\varepsilon>0$ (which corresponds to the interval $[\,\liminf \textbf{x}, \limsup \textbf{x}\,]$ if $\mathcal{I}$ is the ideal $\text{Fin}$ of finite subsets of $\omega$). First, we characterize all the infinite real matrices $A$ such that $$ \text{core}_{A\textbf{x}}(\mathcal{J})=\text{core}_{\textbf{x}}(\mathcal{I}) $$ for all bounded sequences $\textbf{x}$, provided that $\mathcal{J}$ is a countably generated ideal on $\omega$ and $A$ maps bounded sequences into bounded sequences. Such characterization fails if both $\mathcal{I}$ and $\mathcal{J}$ are the ideal of asymptotic density zero sets. Next, we show that such equality is possible for distinct ideals $\mathcal{I}, \mathcal{J}$, answering an open question in [J.~Math.~Anal.~Appl.~\textbf{321} (2006), 515--523]. Lastly, we prove that, if $\mathcal{J}=\text{Fin}$, the above equality holds for some matrix $A$ if and only if $\mathcal{I}=\text{Fin}$ or $\mathcal{I}=\text{Fin}\oplus \mathcal{P}(\omega)$. |