Schwartz $\kappa$-densities for the moduli stack of rank $2$ bundles on a curve over a local field
Autor: | Braverman, Alexander, Kazhdan, David, Polishchuk, Alexander |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\rm{Bun}$ be the moduli stack of rank $2$ bundles with fixed determinant on a smooth proper curve $C$ over a local field $F$. We show how to associate with a Schwartz $\kappa$-density, for $\rm{Re}(\kappa)\ge 1/2$, a smooth function on the corresponding coarse moduli space of very stable bundles. In the non-archimedean case we also prove that the stack $\rm{Bun}$ is $\kappa$-bounded in the sense of Definition 2.10 of [arXiv:2112.08139] for any $\kappa\in\mathbb{C}$. Comment: 31 pages; v2: corrected definition of $\kappa$-nice |
Databáze: | arXiv |
Externí odkaz: |