Popis: |
In 2022, Brugall{\'e} and Jaramillo-Puentes showed that the coefficients of small codegree of the tropical refined invariant are polynomial in the Newton polygon. This raised the question of the existence of universal polynomials giving these coefficients, i.e. polynomials depending only on the genus and the codegree, and with variables the combinatorial data of the Newton polygon.In this paper we show that such universal polynomials exist for rational enumeration, and we give an explicit formula. The proof relies on the manipulation of floor diagrams. |