Reset-Free Data-Driven Gain Estimation: Power Iteration using Reversed-Circulant Matrices

Autor: Oomen, Tom, Rojas, Cristian R.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: A direct data-driven iterative algorithm is developed to accurately estimate the $H_\infty$ norm of a linear time-invariant system from continuous operation, i.e., without resetting the system. The main technical step involves a reversed-circulant matrix that can be evaluated in a model-free setting by performing experiments on the real system.
Comment: 7 pages, 4 figures
Databáze: arXiv