Autor: |
Angiuli, Luciana, Bignamini, Davide A., Ferrari, Simone |
Rok vydání: |
2023 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
In a separable Hilbert space, we study supercontractivity and ultracontractivity properties for a transition semigroups associated with a stochastic partial differential equations. This is done in terms of exponential integrability of Lipschitz functions and some logarithmic Sobolev-type inequalities with respect to invariant measures. The abstract characterization results concerning the improving of summability can be applied to transition semigroups associated to a stochastic reaction-diffusion equations. |
Databáze: |
arXiv |
Externí odkaz: |
|