Mode-multiplexing deep-strong light-matter coupling

Autor: Mornhinweg, J., Diebel, L., Halbhuber, M., Prager, M., Riepl, J., Inzenhofer, T., Bougeard, D., Huber, R., Lange, C.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Dressing quantum states of matter with virtual photons can create exotic effects ranging from vacuum-field modified transport to polaritonic chemistry, and may drive strong squeezing or entanglement of light and matter modes. The established paradigm of cavity quantum electrodynamics focuses on resonant light-matter interaction to maximize the coupling strength $\Omega_\mathrm{R}/\omega_\mathrm{c}$, defined as the ratio of the vacuum Rabi frequency and the carrier frequency of light. Yet, the finite oscillator strength of a single electronic excitation sets a natural limit to $\Omega_\mathrm{R}/\omega_\mathrm{c}$. Here, we demonstrate a new regime of record-strong light-matter interaction which exploits the cooperative dipole moments of multiple, highly non-resonant magnetoplasmon modes specifically tailored by our metasurface. This multi-mode coupling creates an ultrabroadband spectrum of over 20 polaritons spanning 6 optical octaves, vacuum ground state populations exceeding 1 virtual excitation quantum for electronic and optical modes, and record coupling strengths equivalent to $\Omega_\mathrm{R}/\omega_\mathrm{c}=3.19$. The extreme interaction drives strongly subcycle exchange of vacuum energy between multiple bosonic modes akin to high-order nonlinearities otherwise reserved to strong-field physics, and entangles previously orthogonal electronic excitations solely via vacuum fluctuations of the common cavity mode. This offers avenues towards tailoring phase transitions by coupling otherwise non-interacting modes, merely by shaping the dielectric environment.
Databáze: arXiv