Strichartz estimates for the $(k,a)$-generalized Laguerre operators
Autor: | Taira, Kouichi, Tamori, Hiroyoshi |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we prove Strichartz estimates for the $(k,a)$-generalized Laguerre operators $a^{-1}(-|x|^{2-a}\Delta_k+|x|^a)$ which were introduced by Ben Sa\"{\i}d-Kobayashi-{\0}rsted, and for the operators $|x|^{2-a}\Delta_k$. Here $k$ denotes a non-negative multiplicity function for the Dunkl Laplacian $\Delta_k$ and $a$ denotes a positive real number satisfying certain conditions. The cases $a=1,2$ were studied previously. We consider more general cases here. The proof depends on symbol-type estimates of special functions and a discrete analog of the stationary phase theorem inspired by the work of Ionescu-Jerison. Comment: 35 pages |
Databáze: | arXiv |
Externí odkaz: |