Learning Green's Function Efficiently Using Low-Rank Approximations

Autor: Wimalawarne, Kishan, Suzuki, Taiji, Langer, Sophie
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Learning the Green's function using deep learning models enables to solve different classes of partial differential equations. A practical limitation of using deep learning for the Green's function is the repeated computationally expensive Monte-Carlo integral approximations. We propose to learn the Green's function by low-rank decomposition, which results in a novel architecture to remove redundant computations by separate learning with domain data for evaluation and Monte-Carlo samples for integral approximation. Using experiments we show that the proposed method improves computational time compared to MOD-Net while achieving comparable accuracy compared to both PINNs and MOD-Net.
Databáze: arXiv