Autor: |
Deift, Percy, Piorkowski, Mateusz |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
SIGMA 20 (2024), 004, 48 pages |
Druh dokumentu: |
Working Paper |
DOI: |
10.3842/SIGMA.2024.004 |
Popis: |
We prove an asymptotic formula for the recurrence coefficients of orthogonal polynomials with orthogonality measure $\log \bigl(\frac{2}{1-x}\bigr) {\rm d}x$ on $(-1,1)$. The asymptotic formula confirms a special case of a conjecture by Magnus and extends earlier results by Conway and one of the authors. The proof relies on the Riemann-Hilbert method. The main difficulty in applying the method to the problem at hand is the lack of an appropriate local parametrix near the logarithmic singularity at $x = +1$. |
Databáze: |
arXiv |
Externí odkaz: |
|