Recurrence Coefficients for Orthogonal Polynomials with a Logarithmic Weight Function

Autor: Deift, Percy, Piorkowski, Mateusz
Rok vydání: 2023
Předmět:
Zdroj: SIGMA 20 (2024), 004, 48 pages
Druh dokumentu: Working Paper
DOI: 10.3842/SIGMA.2024.004
Popis: We prove an asymptotic formula for the recurrence coefficients of orthogonal polynomials with orthogonality measure $\log \bigl(\frac{2}{1-x}\bigr) {\rm d}x$ on $(-1,1)$. The asymptotic formula confirms a special case of a conjecture by Magnus and extends earlier results by Conway and one of the authors. The proof relies on the Riemann-Hilbert method. The main difficulty in applying the method to the problem at hand is the lack of an appropriate local parametrix near the logarithmic singularity at $x = +1$.
Databáze: arXiv