Discrete Army Ant Search Optimizer-Based Target Coverage Enhancement in Directional Sensor Networks

Autor: Yao, Yindi, Wen, Qin, Cui, Yanpeng, Zhao, Bozhan
Rok vydání: 2023
Předmět:
Zdroj: in IEEE Sensors Letters, vol. 6, no. 4, pp. 1-4, April 2022, Art no. 7500404
Druh dokumentu: Working Paper
DOI: 10.1109/LSENS.2022.3158274
Popis: Coverage of interest points is one of the most critical issues in directional sensor networks. However, considering the remote or inhospitable environment and the limitation of the perspective of directional sensors, it is easy to form perception blind after random deployment. The intension of our research is to deal with the bound-constrained optimization problem of maximizing the coverage of target points. A coverage enhancement strategy based on a discrete army ant search optimizer (DAASO) is proposed to solve the above problem, which is inspired by the biological habits of army ants. A set of experiments are conducted using different sensor parameters. Experimental results verify the effectiveness of the DAASO in coverage effect when compared to the existing methods.
Comment: 4 pages, 4 figure, 2 tables
Databáze: arXiv