The lower bound of weighted representation function

Autor: Chen, Shi-Qiang
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: For any given set $A$ of nonnegative integers and for any given two positive integers $k_1,k_2$, $R_{k_1,k_2}(A,n)$ is defined as the number of solutions of the equation $n=k_1a_1+k_2a_2$ with $a_1,a_2\in A$. In this paper, we prove that if integer $k\geq2$ and set $A\subseteq\mathbb{N}$ such that $R_{1,k}(A,n)=R_{1,k}(\mathbb{N}\setminus A,n)$ holds for all integers $n\geq n_0$, then $R_{1,k}(A,n)\gg \log n$.
Databáze: arXiv