On the sharpness of the bound for the local converse theorem of p-adic GL_N, general N
Autor: | Adrian, Moshe |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let F be a non-archimedean local field of characteristic zero. In this paper we construct examples of supercuspidal representations showing that the bound $[N/2]$ for the local converse theorem of $GL_N(F)$ is sharp, N general, when the residual characteristic of $F$ is bigger than $N$. Comment: Added reference to an analogous result, by Henniart, in the context of L and epsilon factors |
Databáze: | arXiv |
Externí odkaz: |