Sequential Re-estimation Learning of Optimal Individualized Treatment Rules Among Ordinal Treatments with Application to Recommended Intervals Between Blood Donations

Autor: Xu, Yuejia, Wood, Angela M., Roberts, David J., Tom, Brian D. M.
Rok vydání: 2023
Předmět:
Druh dokumentu: Working Paper
Popis: Personalized medicine has gained much popularity recently as a way of providing better healthcare by tailoring treatments to suit individuals. Our research, motivated by the UK INTERVAL blood donation trial, focuses on estimating the optimal individualized treatment rule (ITR) in the ordinal treatment-arms setting. Restrictions on minimum lengths between whole blood donations exist to safeguard donor health and quality of blood received. However, the evidence-base for these limits is lacking. Moreover, in England, the blood service is interested in making blood donation both safe and sustainable by integrating multi-marker data from INTERVAL and developing personalized donation strategies. As the three inter-donation interval options in INTERVAL have clear orderings, we propose a sequential re-estimation learning method that effectively incorporates "treatment" orderings when identifying optimal ITRs. Furthermore, we incorporate variable selection into our method for both linear and nonlinear decision rules to handle situations with (noise) covariates irrelevant for decision-making. Simulations demonstrate its superior performance over existing methods that assume multiple nominal treatments by achieving smaller misclassification rates and larger value functions. Application to a much-in-demand donor subgroup shows that the estimated optimal ITR achieves both the highest utilities and largest proportions of donors assigned to the safest inter-donation interval option in INTERVAL.
Databáze: arXiv