On equal values of products and power sums of consecutive elements in an arithmetic progression
Autor: | Bazsó, András, Kreso, Dijana, Luca, Florian, Pintér, Ákos, Rakaczki, Csaba |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we study the Diophantine equation \begin{align*} b^k + \left(a+b\right)^k + &\left(2a+b\right)^k + \ldots + \left(a\left(x-1\right) + b\right)^k = \\ &y\left(y+c\right) \left(y+2c\right) \ldots \left(y+ \left(\ell-1\right)c\right), \end{align*} where $a,b,c,k,\ell$ are given integers under natural conditions. We prove some effective results for special values for $c,k$ and $\ell$ and obtain a general ineffective result based on Bilu-Tichy method. |
Databáze: | arXiv |
Externí odkaz: |