Autor: |
Bevilacqua, Giulia, Lonati, Chiara |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Bollettino dell'Unione Matematica Italiana (2024) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s40574-023-00392-6 |
Popis: |
We introduce a modified Kirchhoff-Plateau problem adding an energy term to penalize shape modifications of the cross-sections appended to the elastic midline. In a specific setting, we characterize quantitatively some properties of minimizers. Indeed, choosing three different geometrical shapes for the cross-section, we derive Euler-Lagrange equations for a planar version of the Kirchhoff-Plateau problem. We show that in the physical range of the parameters, there exists a unique critical point satisfying the imposed constraints. Finally, we analyze the effects of the surface tension on the shape of the cross-sections at the equilibrium. |
Databáze: |
arXiv |
Externí odkaz: |
|