Effects of surface tension and elasticity on critical points of the Kirchhoff-Plateau problem

Autor: Bevilacqua, Giulia, Lonati, Chiara
Rok vydání: 2023
Předmět:
Zdroj: Bollettino dell'Unione Matematica Italiana (2024)
Druh dokumentu: Working Paper
DOI: 10.1007/s40574-023-00392-6
Popis: We introduce a modified Kirchhoff-Plateau problem adding an energy term to penalize shape modifications of the cross-sections appended to the elastic midline. In a specific setting, we characterize quantitatively some properties of minimizers. Indeed, choosing three different geometrical shapes for the cross-section, we derive Euler-Lagrange equations for a planar version of the Kirchhoff-Plateau problem. We show that in the physical range of the parameters, there exists a unique critical point satisfying the imposed constraints. Finally, we analyze the effects of the surface tension on the shape of the cross-sections at the equilibrium.
Databáze: arXiv