Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation

Autor: Boyko, Vyacheslav M., Popovych, Roman O., Vinnichenko, Oleksandra O.
Rok vydání: 2022
Předmět:
Zdroj: Commun. Nonlinear Sci. Numer. Simul. 132 (2024), 107915
Druh dokumentu: Working Paper
DOI: 10.1016/j.cnsns.2024.107915
Popis: Applying an original megaideal-based version of the algebraic method, we compute the point-symmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.
Comment: 28 pages, minor corrections
Databáze: arXiv