Well-posedness of generalized KdV and one-dimensional fourth-order derivative nonlinear Schr\'odinger equations for data with an infinite $L^2$ norm

Autor: Lu, Yufeng
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1111/sapm.12559
Popis: We study the Cauchy problem for the generalized KdV and one-dimensional fourth-order derivative nonlinear Schr\"odinger equations, for which the global well-posedness of solutions with the small rough data in certain scaling limit of modulation spaces is shown, which contain some data with infinite $L^{2}$ norm.
Comment: 17 pages, all comments are welcome
Databáze: arXiv
Nepřihlášeným uživatelům se plný text nezobrazuje