CHEX-MATE: pressure profiles of 6 galaxy clusters as seen by SPT and Planck

Autor: Oppizzi, Filippo, De Luca, Federico, Bourdin, Hervé, Mazzotta, Pasquale, Ettori, Stefano, Gastaldello, Fabio, Kay, Scott, Lovisari, Lorenzo, Maughan, Ben J., Pointecouteau, Etienne, Pratt, Gabriel W., Rossetti, Mariachiara, Sayers, Jack, Sereno, Mauro
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1051/0004-6361/202245012
Popis: Pressure profiles are sensitive probes of the thermodynamic conditions and the internal structure of galaxy clusters. The intra-cluster gas resides in hydrostatic equilibrium within the Dark Matter gravitational potential. However, this equilibrium may be perturbed, e.g. as a consequence of thermal energy losses, feedback and non-thermal pressure supports. Accurate measures of the gas pressure over the cosmic times are crucial to constrain the cluster evolution as well as the contribution of astrophysical processes. In this work we presented a novel algorithm to derive the pressure profiles of galaxy clusters from the Sunyaev-Zeldovich (SZ) signal measured on a combination of Planck and South Pole Telescope (SPT) observations. The synergy of the two instruments made it possible to track the profiles on a wide range of spatial scales. We exploited the sensitivity to the larger scales of the Planck High-Frequency Instrument to observe the faint peripheries, and the higher spatial resolution of SPT to solve the innermost regions. We developed a two-step pipeline to take advantage of the specifications of each instrument. We first performed a component separation on the two data-sets separately to remove the background (CMB) and foreground (galactic emission) contaminants. Then we jointly fitted a parametric pressure profile model on a combination of Planck and SPT data. We validated our technique on a sample of 6 CHEX-MATE clusters detected by SPT. We compare the results of the SZ analysis with profiles derived from X-ray observations with XMM-Newton. We find an excellent agreement between these two independent probes of the gas pressure structure.
Comment: 19 pages, 13 figures, submitted to A&A
Databáze: arXiv