Non-uniqueness of Leray solutions to the hypodissipative Navier-Stokes equations in two dimensions

Autor: Albritton, Dallas, Colombo, Maria
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s00220-023-04725-6
Popis: We exhibit non-unique Leray solutions of the forced Navier-Stokes equations with hypodissipation in two dimensions. Unlike the solutions constructed in \cite{albritton2021non}, the solutions we construct live at a supercritical scaling, in which the hypodissipation formally becomes negligible as $t \to 0^+$. In this scaling, it is possible to perturb the Euler non-uniqueness scenario of Vishik \cite{Vishik1,Vishik2} to the hypodissipative setting at the nonlinear level. Our perturbation argument is quasilinear in spirit and circumvents the spectral theoretic approach to incorporating the dissipation in \cite{albritton2021non}.
Comment: 17 pages
Databáze: arXiv
Nepřihlášeným uživatelům se plný text nezobrazuje