Non-uniqueness of Leray solutions to the hypodissipative Navier-Stokes equations in two dimensions
Autor: | Albritton, Dallas, Colombo, Maria |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00220-023-04725-6 |
Popis: | We exhibit non-unique Leray solutions of the forced Navier-Stokes equations with hypodissipation in two dimensions. Unlike the solutions constructed in \cite{albritton2021non}, the solutions we construct live at a supercritical scaling, in which the hypodissipation formally becomes negligible as $t \to 0^+$. In this scaling, it is possible to perturb the Euler non-uniqueness scenario of Vishik \cite{Vishik1,Vishik2} to the hypodissipative setting at the nonlinear level. Our perturbation argument is quasilinear in spirit and circumvents the spectral theoretic approach to incorporating the dissipation in \cite{albritton2021non}. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |